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SUMMARY 

An expression for the radial temperature profile in capillary zone electrophoresis 
was derived, taking into account the temperature dependence of the buffer electrical 
conductivity and the polyimide coating of the quartz capillary. Calculations show that 
in typical capillary zone electrophoresis experiments; i.e., capillaries with 50-100 pm 
I.D., 375 pm O.D., and up to 5 W power input, the temperature profile rigorously 
derived is nearly identical to a parabolic profile. At high input powers, the parabolic 
approximation underestimates the temperature at the capillary center. 

INTRODUCTION 

Capillary zone electrophoresis (CZE) is a separation technique the plate height 
efficiency of which can be very high. In practice, however, the theoretically calculated 
efficiencies are not observed. One possible reason for the lower than theoretical 
efficiencies can be traced to heating effect due to the passage of current through the 
capillary’. This heating effect causes a temperature difference between the center of the 
capillary and the wall, which, in turn, causes differences in the viscosity of the buffer 
electrolyte within the column. The resulting radial viscosity gradient produces 
a velocity difference between the center of the capillary and the wall. This velocity 
difference gives rise to mass transfer effects which lower the system efficiency. Grushka 
et al.’ have studied the effect of temperature differences on the efficiency of CZE. In 
that study the assumed temperature profile produced a parabolic velocity profile 
across the capillary. In the present communication, this parabolic temperature profile 
assumption is justified. 
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Jerusalem, Israel. 
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THEORY 

Derivation of temperature profile 
Modern CZE separations are carried out in quartz capillaries that are coated 

with a thin layer of polyimide. In this analysis, RI symbolizes the internal radius, R2 
the quartz radius and R, the total radius of the capillary. The temperature dependence 
of the thermal and electrical conductivities should be taken into account in the heat 
balance equations in order to obtain the correct temperature profile. Using an 
approach similar to that of Coxon and Binder3 and by Brown and Hinckle4, the heat 
balance equation for CZE can be written as 

Id dT G 

--(r-)=-- r dr dr ki 
(1) 

where T is the temperature, r is the radial position, G is the heat generation per unit 
volume and kl is the termal conductivity of the buffer solution. The boundary 
condition is 

-Rlkl $ = UR1(T1 - TJ at r = RI 

where RI is the internal radius of the capillary, T1 and T, are the temperature at the 
glass wall and the capillary surroundings (i.e., a thermostated bath) respectively, (at 
RI), and kl is the thermal conductivity of the buffer. The quantity UR1 is related to the 
heat dissipation through the capillary wall, and it is given by 

&=&ln($)+iln($)+& 

where R and k indicate radius and thermal conductivity and subscripts 2 and c indicate 
quantities relating to the quartz glass and polyimide coating, respectively. Because of 
the electrical conductivity dependence on temperature, the rate of heat generation will 
be written as 

G = Go[l + c(y)] (3) 

where LX is the temperature coefficient of electrical conductivity of the buffer, GO is the 
rate of heat generation in the absence of temperature dependence of the electrical 
conductivity and T, is the temperature of the capillary surroundings. When this 
temperature dependence of the heat generation is taken into account, the equation 
describing the heat balance can be written as3 

$$ yg = -S(l + CrO) 
( ) 

(41 



TEMPERATURE GRADIENTS IN CZE 221 

where 

GoR: 
’ = k,T, 

T - T, e=--- 
TS 

The boundary condition is 

aty = ~1 

The solution of eqn. 4 is 

e = AJ&Iy) - ; (5) 

where /?’ = LYS and A is a constant of integration. Using the boundary conditions it can 
be shown that 

1 

A = @o(BYd - (B/r> Jl(PYl>l 

where 

The expression for the temperature profile is, therefore: 

1 

’ = a 

JoVY) 

[Jo@YI> - WV> J~(BYI>I - ’ 

or 

TS 
T = T 

Jo@Y) 
[Jo@YI> - (B/r) JI(BYI)I - ’ 

(6) 

(7) 

(8) 

Evaluation of the temperature profile 
The temperature expression in eqn. 8 is similar to the expression obtained by 

Coxon and Binder3. However, eqn. 8 accounts for the fact that the quartz capillary 
tubing used in CZE is coated with polyimide. To evaluate the temperature profile, it is 
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essential to obtain Go, which is needed to calculate B. Coxon and Binder3 did not 
describe the manner by which Go is obtained. Since the correct evaluation of Go is 
crucial to the proper determination of the temperature, we will elaborate here on this 
point. 

Since heat dissipation in the capillary is from the center to the wall, we will 
re-write the expression for G in terms of a differential equation in the radial direction 

dG = 27crLGe(l + c&)dr 

Or. in terms of reduced radius 

dG = 2rcLR,2G,,(l + &)ydy (9) 

Substituting for 8 from eqn. 7 and rearranging, we get 

dG = 2~LR,‘G,[w!J,(~y)]ydy (10) 

Since the electrical conductivity of the buffer varies radially with the temperature, we 
integrate over y. Thus, a substitution for A and integration between 0 and y1 yield 

~~LR:Go_YIJI(BYI) 
G = B[JO(BYl) - (BlY)Jl(BYl)l 

(11) 

Eqn. 11 allows us to obtain the value of Go by iteration (note that /? is also a function of 
Go). However, due to the transcendental nature of eqn. 11, numerical procedures must 
be used. 

Calculations 
A computer program was written to compute Go iteratively for a given input 

power. The iteration of eqn. 11 should be done with caution since the equation can 
have many roots. The only physically significant solution is the smallest root. 
Therefore, the iteration should start with a low initial estimate of Go to insure the 
proper convergence. 

Once the value of Go is determined, the temperature profile is calculated using 
eqn. 8, as well as the following parabolic profile 

The values of the various parameters used in the calculation are given in the sub-titles 
of Tables I and II. The radii of the capillary used in the calculations are typical of the 
sizes used in practice; i.e., inner diameter of 50 pm, quartz capillary outer diameter of 
345 pm and polyimide coating thickness of 15 pm (giving a total outside diameter of 
375 pm). Assuming that an l-degree change will cause a 2% change in the conductivity, 
the value of u is then 7.75. 

Table I gives the temperature at the capillary center, at the inner wall and A T as 
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TABLE I 

BUFFER TEMPERATURES AT THE CENTER AND AT THE WALL OF THE CAPILLARY 

Parametersused: L = I m; RZ = 1.725 x 10e4 m; R, = 1.875 x 10e4 m; T. = 298 K; h = 10000 W/m’K; 
k, = 0.605 W/mK; k, = 1.5 W/mK; k, = 0.155 W/mK; a = 7.75. 

Power 

(WI 

Eqn. 8 

Center 

(Ki 

Wall AT 

(K) lKi 

Parabolic 

Center Wall AT 

(K) (K) (K) 

Internal diameter = 50 pm 

2 299.214 298.951 0.263 299.214 298.951 0.263 

3 299.722 299.326 0.396 299.721 299.326 0.395 

5 300.738 300.077 0.661 300.735 300.077 0.658 

Internal diameter = 100 pm 

2 299.067 298.804 0.263 299.067 298.804 0.263 

3 299.501 299.106 0.395 299.500 299.106 0.394 

5 300.370 299.709 0.661 300.367 299.709 0.658 

found from the two methods of calculation. Shown in Table I are results for several 
capillary internal radii and power inputs. The results in Table I have several important 
implications: (a) typical CZE systems exhibit small temperature drops between the 
center and the wall -under the usual operating conditions, temperature effects are 
minimal’; (b) within the limits of the power input shown in the table, the temperature 
difference between the center and the inner wall of the capillary is independent of the 
inner radius. However, the actual temperatures are a function of the internal radius, 
showing a decrease with an increase in the diameter; (c) the temperatures calculated 
using eqn. 8 are identical, for all practical purposes, to those calculated from eqn. 12 
over the whole cross section of the capillary. Fig. 1 shows the temperature profile 
within the capillary. The line depicting the temperature behavior is actually the 
superposition of two lines, one calculated using eqn. 8 and the other calculated using 
the parabolic profile, eqn. 12. 

300 300.5 301 301.5 302 

Temperature (K) 

Fig. 1. Temperature profile as calculated from eqn. 8. Parabolic equation yields identical profile. Parameters 
used in the calculations are identical to those in Table I. Input power, 5 W; radius of capillary, 25 pm. 
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TABLE II 

BUFFER TEMPERATURE AT THE CENTER AND AT THE WALL AT HIGH INPUT POWERS 

Parameters used: L = 1 m; R2 = 1.725 x 10m4 m; R, = 1.875 x IO-“ m; T, = 298 K; h = 10000 W/m’K; 
kl = 0.605 W/mK; k2 = 1.5 W/mK; k, = 0.155 W/mK; a = 7.75; internal diameter = 50 pm. 

Power 

(W) 

Eqn. 8 

Center 

(KI 

Wall AT 

(K) (K) 

Parabolic 

Center Wall AT 

IK) (KI (K) 

10 303.280 301.954 1.326 303.270 301.954 1.315 
15 305.826 303.832 1.995 305.805 303.832 1.973 
25 310.930 307.586 3.344 310.874 307.586 3.288 

Table I describes the results for a capillary whose overall outer diameter is 375 
pm. The conclusions drawn from the table are valid even if the capillary radius is 
changed, provided that the power input is the same. Eqn. 8 and the parabolic profile 
will yield similar results as long as the power input is relatively small. When the power 
is increased, the discrepancy between the two temperature profiles increases. Table II 
shows the results of the calculation for power inputs of 10, 15 and 25 W. If the CZE 
system is thermostated, such power inputs can be tolerated, as evidenced from the 
relatively low predicted temperatures. We see from Table II that as the power 
increases, eqn. 8 predicts a greater temperature difference between the center and the 
inner wall of the capillary. Both, eqns. 8 and 12 give a similar wall temperature. 
However, eqn. 8 calculates a higher center temperature than the parabolic equation. 
Fig. 2 shows the temperature profile as determined by both approaches. From Fig. 
2 we can see that the greatest difference between eqn. 8 and the parabolic equation 
occurs in the center of the capillary. The difference between the two profiles is small 
even at very high power input values, which are not used in the conventional practice of 
CZE (e.g., 0.06 degree difference at a power input of 25 W). At such high input powers, 
the temperature difference between center and wall is rather high (above 3 degrees) so 
that the contribution to the plate height is prohibitively high2. 

307 308 309 310 311 

Temperature (K) 

Fig. 2. Temperature profiles as calculated from eqn. 8 (---) and from the parabolic equation (----). 
Parameters used in the calculations are identical to those in Table II. Input power, 25 W; radius of capillary, 
25 urn. 
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With relatively wide tubes (several mm in diameter), the resulting current is quite 
high at voltages which yield reasonable analysis times. In such cases, the power 
dissipated in the tube is very high, and eqn. 8 will be more accurate than eqn. 12 in 
predicting the temperature profile. However, the use of very wide tubes for CZE is not 
recommended since the temperature difference between center-to-wall will be much 
too large to obtain efficient separations. 

CONCLUSIONS 

Under the normal operating conditions, the nearly identical behaviors of eqns. 
8 and 12, justify the use of parabolic temperature profiles in determining the effect of 
temperature on the efficiencies of CZE separations2. 

SYMBOLS 

A Integration constant 
G heat generation rate (W/m3) 
Go heat generation in the absence of temperature dependence of the buffer (W/m3) 
h heat transfer coefficient (W/m*K) 
JO Bessel function of zero order and first kind 
J1 Bessel function of first order and first kind 
kr thermal conductivity of the buffer (WjmK) 
k2 thermal conductivity of the capillary wall (WjmK) 
k, thermal conductivity of the polyimide coating (WjmK) 
L capillary length (m) 
RI inner radius of the capillary (m) 
R2 outer radius of the quartz wall (m) 
R, outer radius of the capillary; glass and polyimide (m) 
S reduced coefficient of heat generation (see eqn. 4) 
Tr temperature at the inside wall of the capillary (K) 
T, temperature of the capillary surrounding (K) 
U overall heat transfer coefficient (W/m*K) 
yl dimensionless radial position r/R1 

coefficient of electrical conductivity of the buffer (dimensionless) 
; (as)“* 

i 
reduced heat transfer coefficient (see eqn. 6) 
reduced temperature (see eqn. 4) 
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